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The Probability of Negation of a Cruise Missile 

Dr. N. S. Sivakumaran,* Paul A. Bigelman,* Laura T. Lee, 
and Robert J. Jesionowski 

SPARTA Inc., 1911 North Fort Myer Drive, Suite 1100, Arlington, VA 22209 

Since the ballistic missile (BM) trajectory can be determined uniquely, the 
probability of negation for a BM can be determined as a function of the pair 
of launch and target (impact) points. On the other hand, if a cruise missile 
(CM) is detected at some point along its route, its intended target cannot be 
singled out; the CM route from the launch point to its intended target point 
is not unique. Given the pair of launch and target points, the probability 
of negation for a CM is, therefore, route dependent. Here we propose a 
simple method to obtain the route most likely to be chosen by the enemy, 
given any pair of launch and target points. One may assume conservatively 
that the enemy would pre-plan his CM route to minimize negation along the 
entire route. Accordingly, among all the routes connecting a pair of launch 
and target points, this particular CM route is the Least Defendable Route 
(LDR) for the defense. Our method has three steps: (1) Define a risk function 
locally in terms of the probability of detection and the conditional probability 
of engagement and kill once detected, defined over the entire battlefield, (2) 
Find the LDR, which is the route of Least Cumulative Risk for the enemy, and 
(3) Calculate the probability of negation for this LDR. Two methods to find 
the LDR's are presented: Calculus of Variations and Shortest Path (Cost). A 
simple numerical example is given as a demonstration of our method. Finally, 
conclusions and suggestions for future work are made. 

I. Introduction 

Probability of negation for ballistic missiles 

The Theater Air and Missile Defense (TAMD) Cap- 
stone Requirements Document (CRD)1 requires perfor- 
mance by active defense to a specified level of prob- 
ability of negation P . In the CRD, this is defined 
as 

Probability of negation (Pn). Pn is the probability 
(per target) of target destruction, deviation from in- 
tended flight path or other actions which protect the 
defended area from conventional, nuclear, biological or 
chemical effects. 

(Note that in the above definition target refers to the 
enemy missile, not to the asset location). In order to 
evaluate the baseline TAMD architecture against the 
requirements posed in the CRD, it is necessary to define 
P in terms which can be used to evaluate the Family of 
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Systems (FoS). In general, the negation of a single mis- 
sile [Theater Ballistic Missile (TBM) or CM] demands 
success in the following three major functions: 

(I) Sensors (SEN), 
(II) BMC4I,* 

(III) Weapons (WPN). 

Each of these functions can be further divided into 
many components depending upon its complexity, and 
also there exist many inter-dependencies among them. 
Therefore, the precise a priori calculation of FoS P 

(P ^ or simply P ) would require complete infor- 

mation about these inter-dependencies as well as ac- 
curate data of various probabilities involved in each of 
these components. The accuracy and performance of 
the P equation will depend, then, not on the form 
of the individual system's P equations, but rather on 
how well the availability and reliability of all the nec- 
essary information are modeled. One can, therefore, in 

*BMC4I is Battle Management, Command, Control, Commu- 
nications, Computers and Intelligence. 

^Here N\FoS is read "Negation given any specific Family of 
Systems", a notation adopted from conditional probability theory 
albeit nothing to do with it. 
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a general way define P as a function 

P 
N\FoS '{SEN'   BMC4l'    WPN) ' *■   ' 

where P„„,P      ,   and P„„„ denote the probabili- 
SEN'    BMC41 WPN r 

ties of success for the Sensor, the BMC4I and Weapon 
components, respectively. 

The Family of Systems, P and the Scenario Ef- 

fectiveness P ,       for the Theater Ballistic Missile De- 
SE\FoS 

fense (TBMD) have been defined and extensively stud- 
ied; see for example Sivakumaran et al. 2. For Cruise 
Missile Defense (CMD), however, proper definitions for 
P and P ,        and how to calculate them have 
N\FoS SE\FoS 

not been well established. Here we propose a method 
to calculate P ,       for the CMD; then P ,       can fol- 

N\FoS SE\FoS 
low from it for a scenario of many CM's. 

by pretending that the enemy possesses the complete 
information about the defense's weakness. 

Since we assume that the enemy has the knowledge of 
the defense's weakness, in order to maximize his chance 
of successfully destroying an asset, he will attempt to 
plan his CM route through the weakest possible points 
in the defense. In a theater, detection may be possible 
at some points where a successful engagement cannot be 
supported, while other points may permit no detection 
at all; the enemy will prefer these as waypoints for his 
CM. Some kind of local parameter associated with nega- 
tion (i.e., in terms of local detection, engagement and 
kill), therefore, is appropriate for constructing a risk 
function R, in terms of risk per unit route length, 
in the domain containing both the threat locations and 
the defended area. Then, we assume that the enemy's 
choice for his CM route is the one that minimizes the 
cumulative risk J, 

Probability of negation for cruise missiles 

Since the BM trajectory can be determined uniquely 
once the launch point and the burn-out conditions have 
become available (which in turn predict the impact 
point uniquely), P for a BM can be calculated 

simply as a function of the threat (launch) point T and 
the intended asset (impact or target) point A: 

J  = 

pBM       =    pBM     .      A) 

N\FoS N\FoS \    '     I (2) 

On the other hand, the main source of difficulty in the 
CMD is that the CM route, from a given threat lo- 
cation T to an asset location A, cannot be predicted 
uniquely because it is programmed by the enemy, de- 
pending upon his perception of the defense, so that his 
CM has the minimum risk of being negated while in 
transit. In general, for CM's 

CM 

N\FoS =   PM\ls^A'CMrOUte)- ^ 
Consequently, a CMD analysis which is similar to that 
of TBMD necessitates standardizing the route for all 
CM's, which is discussed below. 

Consider the following two important concepts: 

Cl. A good defense knows its own weakness; i.e., the 
degree of defense deficiency (or the extent of pro- 
tection) in every area under its guard. 

C2. The enemy wants the highest probability of suc- 
cess in destroying the defense's assets. 

Accordingly, in order to gauge the performance of a 
particular defense architecture and to justify the choice 
of its specific beddown in the theater, the defense must 
consider the worst enemy attack that could occur. The 
minimum defense-evaluation, therefore, can be achieved 

'L Rds. (4) 

along the entire route from his threat (launch) point T 
to the intended asset (target) point A, where ds is an in- 
finitesimal arc length along the route; sT and sA denote 
arc lengths along the route corresponding to points T 
and A, respectively. This particular route is labeled as 
the Least Defendable Route (LDR) for the defense, 
which corresponds to the route of Least Cumulative 
Risk for the enemy. Thus the CM route is customized 
for each pair of threat and asset points and the route 
dependence in (3) is eliminated. We call this "stan- 
dardizing the CM route". 

An appropriate calculation of P.        for CM's must 

therefore invoke the following three steps: 

51. Define a suitable Risk function R in a domain 
which contains both the threat locations and the 
defended area. 

52. Find the LDR from a threat location to an asset 
location; i.e., the route of Least Cumulative Risk 
(exposure) for the enemy. 

53. Calculate the P ,       for that LDR. 
N\FoS 

II. Cruise missile route 
The Least Defendable Route 

Let the asset region A with boundary dA be defined 
in the xy-pla,ne. For simplicity, consider a single des- 
ignated asset located at A= (xA,yA) G A and a single 
threat located at T = (xT,yT). One could assume that 
the enemy will pick a route y = y* (x) to fly his CM from 
T to A which offers the least cumulative risk. Conse- 
quently, among all the routes y = y(x) from T to A, this 
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particular route y = y*(x) of least cumulative risk poses 
the greatest danger to the asset A and therefore must 
have the minimum P for this (T, ^4)-pair. 

N \FoS 

The LDR depends upon the enemy's perception of the 
weakness in the defense. For the time being, without 
loss of generality, let us assume that the enemy defines 
a risk function, in terms of risk per path length, 

R{x,y,y')   >   0 (5) 

in the zy-domain A, where the prime in y' refers to 
the derivative with respect to the independent variable 
x (i.e., the operation d/dx). This includes the cases 
where the risk depends strongly upon the direction y' 
of the CM as well as its position (x, y). The best can- 
didate for R(x,y,y') will be selected later in Section 
III. 

Let s denote the arc length along a CM path y = y{x) 
from T to A; then the cumulative risk J[y(x)] associ- 
ated with this path y = y (x) from T to A can be written 
by 

J[y(x)]   =   [A R{x,y{x),y'{x))ds. (6) 

The problem now is to find the CM route y = y*(x) 
which minimizes the cumulative risk given by (6). 

Methods to find the LDR 

(a) Calculus of Variations 

Equation (6) can be rewritten as 

fXA 
J[y(x)]   =   /     F(x,y,y')dx, 

where 

F(x,y,y')   =  R {x,y,y')y 1 + 2/' 

(7) 

(8) 

The enemy's aim is to find the CM route y = y*(x) 
which minimizes the cumulative risk given by (7). This 
type of problem of finding a function y to extremize 
an integral is dealt with in the Calculus of Variations 
where y = y(x) is given by the solution of the Euler- 
Lagrange equation? 

±(dF\_d_F   =0 

dx \dy' )       dy 
(9) 

Substituting (8) into (9) gives the Euler-Lagrange 
equation for y(x) explicitly in terms of the function 
F(x,y,y') as3 

Fy'y'dj? + Fy'ydx + (Fy'x ~Fyl 
0      (10) 

where subscripts denote partial derivatives with respect 
to the variables; e.g., Fy>y> = d2F/dy' . The second- 
order ordinary differential equation (10) require two 
boundary conditions for its unique solution; these are 
given by the locations of the end points T and A of the 
LDR; viz., 

y(xT)   =  yT , 

V{*A)   =  VA . 

(11) 
(12) 

One can solve (10) subject to boundary conditions (11) 
and (12) for the LDR using numerical integration algo- 
rithms. 

The CM route obtained using the Calculus of Vari- 
ations has an analogy in geometrical optics. Consider 
the Fermat Principle in geometrical optics4. In 1657, 
Pierre de Fermat stated: // light travels from point Pi 
to point P2 through any optical system, it will follow 
a path such that the time of travel is stationary (min- 
imum) with respect to neighboring, but not physically 
possible, paths. 

Consider an optically inhomogeneous and anisotropic 
medium with refractive index n(x,y,y'). Then, the 
speed of light v in this medium varies according to 

v(x,y,y')   = 
n(x,y,y') 

(13) 

where c denotes the speed of light in vacuo. The Fermat 
principle states that the actual path of light y = y* (x) 
from point Pi = (a;1,t/1) to point P2 = (x2,y2) in this 
medium is such that the travel (transit) time given by 

J[y] - l2di = \l*n{x>y'y,) ds (14) 

is the minimum. Here st and s2 are arc lengths along 
the light path y = y* (x) corresponding to points Pi and 
P2, respectively. 

Comparing (6) with (14), the problem of finding the 
CM route that has the least cumulative risk with re- 
spect to the risk function R(x,y,y') is equivalent to ap- 
plying the Fermat principle in geometrical optics with 
respect to the refractive index n{x,y,y'): 

R{x,y,y') 
* v ' 

Risk function in 
CM problem 

n(x,y,y') 
 v ' 

Refractive index in 
geometrical optics 

The CM problem is therefore called a Fermat-type 
problem. 

When the problem does not depend upon the CM di- 
rection y', then the Calculus of Variations approach 
is altogether feasible and practicable to solve. When 
y' is also included, however, the calculations become 
very lengthy. We have therefore not adopted this cum- 
bersome method because of the lack of sufficient time. 

UNCLASSIFIED 



N. S. SIVAKUMARAN et al. AIAA MISSILE SCI. CONFER. 

Ax 

-+ •«- 

-» *- ■> +- 

-» +- 

-> *- 

Figure 1: Example of a battlefield. The risk per 
unit length is given along the eight unit vectors 
at every node. Node T, for example, is assumed 
to be the threat location and all other nodes 
are considered as asset locations A's. The CM 
can travel from one node to another along the 
connections (links) shown. Every node is a po- 
tential waypoint for the CM. 

nodes. Every interior node is connected to its eight 
immediate neighboring nodes while a node at a corner 
is connected to its three immediate neighbors and a 
node at a boundary is connected to its immediate five. 
Figure 1 depicts an example of a typical network of 
nodes and the connections between them, for simplicity 
in a rectangular domain. Let there be a total of N 
number of nodes. From the threat node T the CM is 
launched at asset node A. The enemy's aim is to choose 
the subset W which is a node sequence from M as the 
set of waypoints for his CM, where the first element of 
W is T and the last element is A, so that the resulting 
CM route has the least cumulative risk J which is now 
redefined discretely from (6) as 

3=A 

J[W]   =    £ R3As3, 
3=T 

(15) 

where As3 is the distance between nodes, which is either 

Ax, Ay or yJ(Ax)2 + (Ay)2. 

The problem of minimizing the J defined by (15) is 
dealt with in the field of Operations Research where 
it is a classical optimization problem called "Finding 
the Shortest Path (Cost)". Various methods are dis- 
cussed in Rardin6 and Bertsekas7 to find the short- 
est path from one node to all other nodes when the 
risk R is nonnegative, such as the Bellman-Ford Al- 
gorithm, Dijkstra Algorithm, etc. Gallo et al. 8 give 
a bibliography on the "Shortest Paths". Here we use 
the D'Esopo-Papa Algorithm developed by Gallo and 
Pallotino9 to find the LDR's for the CM's. A computer 
code of this algorithm (in Fortran) is available in the 
book by Bertsekas.7 

III. Choice of the risk function 
Risk derived from the Poisson distribution 

(a) The Poisson distribution 

Cramer10 and Parzen11 give general derivations and 
applications of the Poisson distribution. Here we spe- 
cialize the Poisson distribution to the CM problem. De- 
fine 

(b) Shortest—Path (Cost) Method in Operations 
Research 

Since our problems generally include y' dependence, 
we will therefore go to a simple and shorter method 
to find the LDR, to be described below. Consider a 
battlefield which includes the defended area and the 
threat locations. Let the risk be given as discrete values 
on a regular grid of resolution Ax and Ay; i.e., R is 
given at every grid point which is hereafter referred 
to as a node. For simplicity, the threat locations and 
the asset locations are assumed to be at some of these 

Dl. 8 = The event of negating a CM, 

D2. 

D3. 

Xs = The number of CM negations within an 
interval [so, so + s] along a specific route, counted 
for very many CM flights (i.e., the occurrences of 
event £), where s is measured from an arbitrary 
fixed point SQ in the route (Xs ^ 0 and it is non- 
decreasing with s), 

k[x,y,y') (^ 0) = The average number of 
negations (events £) along a given unit tangent 
vector (i.e., within a directed line segment of unit 
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length) in a route with direction y', averaged over 
a large number of CM flights in this interval of the 
route, 

D4. P[XS = m] = The probability of exactly m 
number of negations within an interval [so, So + s] 
in the route described in D3 for one CM flight. 

We are here stating that the random distribution of 
the events £ over a long route which consists of many 
of the above CM flights strung together, will conform 
to the Poisson distribution.10'11 Then the probability 
of exactly m number of negations within an interval 
[s0,so + s] is given by 

(ksy 
P[Xs=m]   = -ks 

m\ 
(16) 

where the integer m ^ 0 and k is the constant average 
number in D3. Expression (16) is known as the Poisson 
distribution with parameter k. 

(b) Derivation of the risk function 

From (16), the probability of no negation (i.e., escape 
or leakage) of a CM along its entire route, from launch 
s = sT to target s = sA, is given by 

P[XS = 0]   =  exp(-fcs), (17) 

where 

s  =  sA-sT (18) 

if the average number of negations k per unit arc length 
along the CM route is assumed to be a constant. On 
the other hand, if this average number varies along the 
CM route y = y(x), then one can generalize (17) to 

(19) 

where 

P[Xs=0]   =  exp(-J), 

J  =    /     k(x,y,y')ds. (20) 

Consequently, one may assume that the enemy would 
choose that path y = y*(x) for his CM which maxi- 
mizes P [Xs = 0]. This is equivalent to finding the 
CM route y = y*{x) (i.e., the LDR) which minimizes 
J given by (20). Comparing (20) with (6), one therefore 
defines the risk function as 

R  =  k(x,y,y') (21) 

The probability of negation of the CM taking the 
LDR is then directly given by 

PN mm 
=  1-P[XS = 0] 

=  l-exp(-Jmin) 
max 

(22) 

The parameter k in terms of probabilities 

We define 

PI. p (x,y,y')   =   The probability of detection of a 
d 
CM within a unit vector in the route for one CM 
flight, 

P2. p (x,y,y') = Given detection, the conditional 
probability of engagement and kill of the CM with- 
in the same unit vector. 

In definition D2, Xs is the number of CM negations 
within an interval [so, «o + s], where s is measured from 
an arbitrary fixed point so in the route. Letting this 
arbitrary point s0 = s and considering a unit interval 
[s, s + 1] with direction y', define X as the number of 
CM negations along this unit vector. This number X 
will generally be a fraction much less than one. Then 
the local probability of no negation q of a CM along 
this unit vector can be written as 

P[X = 0]   =  exp(-fc) 

=  1 ■p p     = q 
<*   ek *n 

(23) 

(24) 

where (23) follows from (16) by setting m = 0 and s = l 
while (24) follows from PI and P2. From (21) and 
taking the natural logarithm of (23) and (24), one gets 
the risk function R in terms of the local probability of 
no negation q  : 

R  =  k{x,y,y') = -\nqn(x,y,y') (25) 

Note that if Qn is the local probability of no negation 
which is calculated in a line segment of length L, then 
the local probability of no negation q   in a unit length 

is given by qn = Qn    . 

IV. Example 
Consider a rectangular battlefield of size 9 km in the 

x-direction and 16 km in the y-direction. On a regu- 
lar grid of resolution Ax = 3 km and Aj/ = 4 km, the 
product p xp   is shown along eight unit vectors (which 

cover the range for y') at every node as depicted in Fig- 
ure 2, and the risk R is given by (25); viz., 

R =  — In o    =— In [ 1 — p p   ) Hn V d   ek) 
(26) 

For simplicity the risk (per unit length) is assumed 
constant between adjacent nodes. In order somewhat 
to smooth down the data in this discrete model, we 
take this constant as the average of the risk values at 
adjacent nodes for the same direction, e.g., going south- 
east from node 5 [R= - In (1 - .10) = 0.1054] to nodelO 
[i? = -ln(l - .60) = 0.9163] we take the average 0.5108 
as the risk per unit length. Node number 2 is taken to 
be the threat location (T) while the rest of the nodes are 
considered as asset locations. The LDR's from node 2 
to every other node are shown in Figure 3 and the min- 

imum probability of negation P^ 

also marked next to every node. 
mm 

given by (22) is 
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j> 3 km 

Figure 2: Example of a battlefield. The prod- 
uct p xp along the eight unit vectors at every 
node is given as percentage. Node number 2 is 
assumed to be the threat location T and all other 
nodes are considered as asset locations A,s. 

V. Conclusions 

Finding the probability of negation PN for CM's is a 
difficult problem, for the CM route is determined by 
the enemy. Here we have presented a simple method to 
calculate PN by considering the enemy's most favorite 
CM route—a concept we called "standardizing the CM 
route". Detection alone is insufficient to define a rea- 
sonable risk function because, for a successful negation, 
it has to be supported by engagement and there may 
be no engagement units within proximity. Any rea- 
sonable risk function must contain the three elements: 
detection, engagement and kill. The important step is, 
therefore, the construction of an appropriate risk func- 
tion. Our methodology is demonstrated by taking local 

of negation P„ JV mm 
LDR from T to that node 

Figure 3: This shows the Least Defendable Route 
to every asset node from the threat location T 
(node number 2). The number marked adja- 
cent to every node is the minimum probability 

(given as percentage) for the 

This figure, therefore, 
can be interpreted as the minimum PN contour 
map corresponding to this particular threat T. 

probability of negation, which is defined as the prod- 
uct of the local probability of detection along a unit 
vector and the conditional probability of engagement 
and kill given that detection, to define a risk function 
and then finding the Least Defendable Route the en- 
emy would prefer by minimizing the negation probabil- 
ity taken over the entire route. A Shortest-Path (Cost) 
Algorithm from Operations Research has been used to 
determine the LDR's from a single threat to many as- 
sets and the minimum PN contour map resulting from 
a single threat has been constructed. 
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There is another important problem which can be 
directly solved using our method: Given a fixed asset 
location to find the threat location which provides the 
LDR when the enemy has a choice of various threat 
locations. 

It is known that CM's have aerodynamic constraints 
and the number of turns they can make is limited. The 
algorithm we used excludes these restrictions. An al- 
gorithm minimizing (15) subject to constraints such as 
the magnitude of turns and the number of turns would 
justify further study. 

ory and some of its applications, Robert E. Krieger 
Publishing Company, Huntington, N. Y., Reprint 1973, 
pp. 102-108 [Equation (6.5.2) on p. 105]. 

11Parzen, Emanuel, Modern Probability Theory and 
its Applications, John Wiley and Sons, Inc., N. Y., 
1992, pp. 251-267 [Equation (5.17) on p. 267]. 
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